Improve the Zy-3 Height Accuracy Using Icesat/glas Laser Altimeter Data
نویسندگان
چکیده
ZY-3 is the first civilian high resolution stereo mapping satellite, which has been launched on 9th, Jan, 2012. The aim of ZY-3 satellite is to obtain high resolution stereo images and support the 1:50000 scale national surveying and mapping. Although ZY-3 has very high accuracy for direct geo-locations without GCPs (Ground Control Points), use of some GCPs is still indispensible for high precise stereo mapping. The GLAS (Geo-science Laser Altimetry System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), which is the first laser altimetry satellite for earth observation. GLAS has played an important role in the monitoring of polar ice sheets, the measuring of land topography and vegetation canopy heights after launched in 2003. Although GLAS has ended in 2009, the derived elevation dataset still can be used after selection by some criteria. In this paper, the ICESat/GLAS laser altimeter data is used as height reference data to improve the ZY-3 height accuracy. A selection method is proposed to obtain high precision GLAS elevation data. Two strategies to improve the ZY-3 height accuracy are introduced. One is the conventional bundle adjustment based on RFM and bias-compensated model, in which the GLAS footprint data is viewed as height control. The second is to correct the DSM (Digital Surface Model) straightly by simple block adjustment, and the DSM is derived from the ZY-3 stereo imaging after freedom adjustment and dense image matching. The experimental result demonstrates that the height accuracy of ZY-3 without other GCPs can be improved to 3.0 meter after adding GLAS elevation data. What’s more, the comparison of the accuracy and efficiency between the two strategies is implemented for application. * Corresponding author: [email protected]
منابع مشابه
The Relevance of GLAS/ICESat Elevation Data for the Monitoring of River Networks
The Ice, Cloud and Land Elevation Satellite (ICESat) laser altimetry mission from 2003 to 2008 provided an important dataset for elevation measurements. The quality of GLAS/ICESat (Geoscience Laser Altimeter System) data was investigated for Lake Leman in Switzerland and France by comparing laser data to hydrological gauge water levels. The correction of GLAS/ICESat waveform saturation successf...
متن کاملFull Waveform Analysis: Icesat Laser Data for Land Cover Classification
Analysis of the full waveform return pulse of laser altimeter systems is expected to increase the possibilities and accuracy in well-known applications of laser altimetry like DTM generation, forestry and earth surface analysis. NASA’s ICESat Geoscience Laser Altimeter System (GLAS) was launched in 2003 and acquires full waveform data along profiles covering the entire earth. In this study, the...
متن کاملICESat validation of SRTM C-band digital elevation models
[1] The Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and land Elevation Satellite (ICESat) provides a globally-distributed data set well suited for evaluating the vertical accuracy of Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs). The horizontal error (2.4 ± 7.3 m) and vertical error (0.04 ± 0.13 m per degree of incidence angle) for the ICESat data used ...
متن کاملEstimates of forest canopy height and aboveground biomass using ICESat
[1] Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (ICE...
متن کاملRetrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry
Vegetation height is one of the leading dimensions of ecological variations among tree species and is central to ecosystem functioning [1]. Since its launch in 2003, GLAS (Geoscience Laser Altimeter System) on board ICESat (Ice, Cloud,and land Elevation Satellite) has produced unprecedented dataset at the global scale [2]. However, the challenge to retrieve canopy height from large-footprint sa...
متن کامل